mud/fluffos-2.23-ds03/packages/matrix.c
2020-09-06 05:43:07 -07:00

655 lines
13 KiB
C

/*
* matrix.c -- matrix efuns.
* 2-93 : Dwayne Fontenot : original coding.
*/
#include <math.h>
#ifdef LATTICE
#include "/lpc_incl.h"
#else
#include "../lpc_incl.h"
#include "../efun_protos.h"
#endif
#include "matrix.h"
static Matrix identity =
{1., 0., 0., 0.,
0., 1., 0., 0.,
0., 0., 1., 0.,
0., 0., 0., 1.};
static void print_matrix (Matrix, char *);
static void print_array (Vector *, char *);
static Vector *normalize_array (Vector *);
static Vector *cross_product (Vector *, Vector *, Vector *);
static Vector *points_to_array (Vector *, Vector *, Vector *);
void f_id_matrix (void)
{
array_t *matrix;
int i;
matrix = allocate_empty_array(16);
for (i = 0; i < 16; i++) {
matrix->item[i].type = T_REAL;
matrix->item[i].u.real = identity[i];
}
push_refed_array(matrix);
}
void f_translate (void)
{
array_t *matrix;
double x, y, z;
Matrix current_matrix;
Matrix trans_matrix;
Matrix final_matrix;
int i;
if ((sp - 1)->type != T_REAL) {
bad_arg(3, F_TRANSLATE);
}
if (sp->type != T_REAL) {
bad_arg(4, F_TRANSLATE);
}
/*
* get arguments from stack.
*/
matrix = (sp - 3)->u.arr;
x = (sp - 2)->u.real;
y = (sp - 1)->u.real;
z = sp->u.real;
sp -= 3;
/*
* convert vec matrix to float matrix.
*/
for (i = 0; i < 16; i++) {
current_matrix[i] = matrix->item[i].u.real;
}
/*
* create translation matrix.
*/
translate_matrix(x, y, z, trans_matrix);
/*
* compute transformed matrix.
*/
mult_matrix(current_matrix, trans_matrix, final_matrix);
/*
* convert float matrix to vec matrix.
*/
for (i = 0; i < 16; i++) {
matrix->item[i].u.real = final_matrix[i];
}
}
void f_scale (void)
{
array_t *matrix;
double x, y, z;
Matrix current_matrix;
Matrix scaling_matrix;
Matrix final_matrix;
int i;
if ((sp - 1)->type != T_REAL) {
bad_arg(3, F_SCALE);
}
if (sp->type != T_REAL) {
bad_arg(4, F_SCALE);
}
/*
* get arguments from stack.
*/
matrix = (sp - 3)->u.arr;
x = (sp - 2)->u.real;
y = (sp - 1)->u.real;
z = sp->u.real;
sp -= 3;
/*
* convert vec matrix to float matrix.
*/
for (i = 0; i < 16; i++) {
current_matrix[i] = matrix->item[i].u.real;
}
/*
* create scaling matrix.
*/
scale_matrix(x, y, z, scaling_matrix);
/*
* compute transformed matrix.
*/
mult_matrix(current_matrix, scaling_matrix, final_matrix);
/*
* convert float matrix to vec matrix.
*/
for (i = 0; i < 16; i++) {
matrix->item[i].u.real = final_matrix[i];
}
}
void f_rotate_x (void)
{
array_t *matrix;
double angle;
Matrix current_matrix;
Matrix rot_matrix;
Matrix final_matrix;
int i;
/*
* get arguments from stack.
*/
matrix = (sp - 1)->u.arr;
angle = (sp--)->u.real;
/*
* convert vec matrix to float matrix.
*/
for (i = 0; i < 16; i++) {
current_matrix[i] = matrix->item[i].u.real;
}
/*
* create x rotation matrix.
*/
rotate_x_matrix(angle, rot_matrix);
/*
* compute transformed matrix.
*/
mult_matrix(current_matrix, rot_matrix, final_matrix);
/*
* convert float matrix to vec matrix.
*/
for (i = 0; i < 16; i++) {
matrix->item[i].u.real = final_matrix[i];
}
}
void f_rotate_y (void)
{
array_t *matrix;
double angle;
Matrix current_matrix;
Matrix rot_matrix;
Matrix final_matrix;
int i;
/*
* get arguments from stack.
*/
matrix = (sp - 1)->u.arr;
angle = (sp--)->u.real;
/*
* convert vec matrix to float matrix.
*/
for (i = 0; i < 16; i++) {
current_matrix[i] = matrix->item[i].u.real;
}
/*
* create y rotation matrix.
*/
rotate_y_matrix(angle, rot_matrix);
/*
* compute transformed matrix.
*/
mult_matrix(current_matrix, rot_matrix, final_matrix);
/*
* convert float matrix to vec matrix.
*/
for (i = 0; i < 16; i++) {
matrix->item[i].u.real = final_matrix[i];
}
}
void f_rotate_z (void)
{
array_t *matrix;
double angle;
Matrix current_matrix;
Matrix rot_matrix;
Matrix final_matrix;
int i;
/*
* get arguments from stack.
*/
matrix = (sp - 1)->u.arr;
angle = (sp--)->u.real;
/*
* convert vec matrix to float matrix.
*/
for (i = 0; i < 16; i++) {
current_matrix[i] = matrix->item[i].u.real;
}
/*
* create z rotation matrix.
*/
rotate_z_matrix(angle, rot_matrix);
/*
* compute transformed matrix.
*/
mult_matrix(current_matrix, rot_matrix, final_matrix);
/*
* convert float matrix to vec matrix.
*/
for (i = 0; i < 16; i++) {
matrix->item[i].u.real = final_matrix[i];
}
}
void f_lookat_rotate (void)
{
array_t *matrix;
double x, y, z;
Matrix current_matrix;
Matrix lookat_matrix;
int i;
if ((sp - 1)->type != T_REAL) {
bad_arg(3, F_LOOKAT_ROTATE);
}
if (sp->type != T_REAL) {
bad_arg(4, F_LOOKAT_ROTATE);
}
/*
* get arguments from stack.
*/
matrix = (sp - 3)->u.arr;
x = (sp - 2)->u.real;
y = (sp - 1)->u.real;
z = sp->u.real;
sp -= 3;
/*
* convert vec matrix to float matrix.
*/
for (i = 0; i < 16; i++) {
current_matrix[i] = matrix->item[i].u.real;
}
/*
* create new viewing transformation matrix.
*/
lookat_rotate(current_matrix, x, y, z, lookat_matrix);
/*
* convert float matrix to vec matrix.
*/
for (i = 0; i < 16; i++) {
matrix->item[i].u.real = lookat_matrix[i];
}
}
#ifdef F_LOOKAT_ROTATE2
void f_lookat_rotate2 (void)
{
array_t *matrix;
double ex, ey, ez, lx, ly, lz;
Matrix current_matrix;
Matrix lookat_matrix;
int i, j;
for (j = 4; j >= 0; j--) {
if ((sp - j)->type != T_REAL) {
bad_arg(7 - j, F_LOOKAT_ROTATE2);
}
}
/*
* get arguments from stack.
*/
matrix = (sp - 6)->u.arr;
ex = (sp - 5)->u.real;
ey = (sp - 4)->u.real;
ez = (sp - 3)->u.real;
lx = (sp - 2)->u.real;
ly = (sp - 1)->u.real;
lz = sp->u.real;
sp -= 5;
free_array((sp--)->u.arr);
/*
* convert vec matrix to float matrix.
*/
for (i = 0; i < 16; i++) {
current_matrix[i] = matrix->item[i].u.real;
}
/*
* create new viewing transformation matrix.
*/
lookat_rotate2(ex, ey, ez, lx, ly, lz, lookat_matrix);
/*
* convert float matrix to vec matrix.
*/
for (i = 0; i < 16; i++) {
matrix->item[i].u.real = lookat_matrix[i];
}
}
#endif
#ifdef DEBUG
static void print_matrix (Matrix m, char * label)
{
int i;
int j;
fprintf(stderr, "%s:\n", label);
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
fprintf(stderr, "%f\t", m[i * 4 + j]);
}
fprintf(stderr, "\n");
}
}
static void print_array (Vector * v, char * label)
{
fprintf(stderr, "%s:\t%f\t%f\t%f\n", label, v->x, v->y, v->z);
}
#endif
static Vector *normalize_array (Vector * v)
{
double xx, yy, zz, mm, m;
xx = v->x * v->x;
yy = v->y * v->y;
zz = v->z * v->z;
mm = xx + yy + zz;
m = sqrt(mm);
if (m) {
v->x /= m;
v->y /= m;
v->z /= m;
}
return (v);
}
static Vector *cross_product (Vector * v, Vector * va, Vector * vb)
{
v->x = (va->y * vb->z) - (va->z * vb->y);
v->y = (va->z * vb->x) - (va->x * vb->z);
v->z = (va->x * vb->y) - (va->y * vb->x);
return (v);
}
static Vector *points_to_array (Vector * v, Vector * pa, Vector * pb)
{
v->x = pa->x - pb->x;
v->y = pa->y - pb->y;
v->z = pa->z - pb->z;
return (v);
}
void lookat_rotate (Matrix T, double x, double y, double z, Matrix M)
{
static Vector N, V, U;
static Vector ep, lp;
lp.x = x;
lp.y = y;
lp.z = z;
ep.x = T[12];
ep.y = T[13];
ep.z = T[14];
points_to_array(&N, &lp, &ep);
normalize_array(&N);
U.x = T[0];
U.y = T[4];
U.z = T[8];
cross_product(&V, &N, &U);
normalize_array(&V);
cross_product(&U, &V, &N);
normalize_array(&U);
M[0] = U.x;
M[1] = V.x;
M[2] = N.x;
M[3] = 0.;
M[4] = U.y;
M[5] = V.y;
M[6] = N.y;
M[7] = 0.;
M[8] = U.z;
M[9] = V.z;
M[10] = N.z;
M[11] = 0.;
#if 0
M[12] = ep.x;
M[13] = ep.y;
M[14] = ep.z;
M[15] = 1.;
#endif
#if 0
M[12] = -U.x * ep.x - U.y * ep.y - U.z * ep.z;
M[13] = -V.x * ep.x - V.y * ep.y - V.z * ep.z;
M[14] = -N.x * ep.x - N.y * ep.y - N.z * ep.z;
#endif
M[12] = ((U.x * ep.x) + (U.y * ep.y) + (U.z * ep.z));
M[13] = ((V.x * ep.x) + (V.y * ep.y) + (V.z * ep.z));
M[14] = ((N.x * ep.x) + (N.y * ep.y) + (N.z * ep.z));
M[15] = 1.;
#ifdef DEBUG
print_array(&lp, "look point");
print_array(&ep, "eye point");
print_array(&N, "normal array");
print_array(&V, "V = N x U");
print_array(&U, "U = V x N");
print_matrix(M, "final matrix");
#endif /* DEBUG */
}
void lookat_rotate2 (double ex, double ey, double ez, double lx, double ly, double lz, Matrix M)
{
static Vector N, V, U;
static Vector ep, lp;
ep.x = ex;
ep.y = ey;
ep.z = ez;
lp.x = lx;
lp.y = ly;
lp.z = lz;
points_to_array(&N, &lp, &ep);
normalize_array(&N);
U.x = 0.;
U.y = 1.;
U.z = 0.;
cross_product(&V, &N, &U);
normalize_array(&V);
cross_product(&U, &V, &N);
normalize_array(&U);
M[0] = U.x;
M[1] = V.x;
M[2] = N.x;
M[3] = 0.;
M[4] = U.y;
M[5] = V.y;
M[6] = N.y;
M[7] = 0.;
M[8] = U.z;
M[9] = V.z;
M[10] = N.z;
M[11] = 0.;
#if 0
M[12] = ep.x;
M[13] = ep.y;
M[14] = ep.z;
M[15] = 1.;
#endif
#if 0
M[12] = -U.x * ep.x - U.y * ep.y - U.z * ep.z;
M[13] = -V.x * ep.x - V.y * ep.y - V.z * ep.z;
M[14] = -N.x * ep.x - N.y * ep.y - N.z * ep.z;
#endif
M[12] = ((U.x * ep.x) + (U.y * ep.y) + (U.z * ep.z));
M[13] = ((V.x * ep.x) + (V.y * ep.y) + (V.z * ep.z));
M[14] = ((N.x * ep.x) + (N.y * ep.y) + (N.z * ep.z));
M[15] = 1.;
#ifdef DEBUG
print_array(&lp, "look point");
print_array(&ep, "eye point");
print_array(&N, "normal array");
print_array(&V, "V = N x U");
print_array(&U, "U = V x N");
print_matrix(M, "final matrix");
#endif /* DEBUG */
}
void translate_matrix (double x, double y, double z, Matrix m)
{
m[0] = 1.;
m[1] = 0.;
m[2] = 0.;
m[3] = 0.;
m[4] = 0.;
m[5] = 1.;
m[6] = 0.;
m[7] = 0.;
m[8] = 0.;
m[9] = 0.;
m[10] = 1.;
m[11] = 0.;
m[12] = x;
m[13] = y;
m[14] = z;
m[15] = 1.;
}
void scale_matrix (double x, double y, double z, Matrix m)
{
m[0] = x;
m[1] = 0.;
m[2] = 0.;
m[3] = 0.;
m[4] = 0.;
m[5] = y;
m[6] = 0.;
m[7] = 0.;
m[8] = 0.;
m[9] = 0.;
m[10] = z;
m[11] = 0.;
m[12] = 0.;
m[13] = 0.;
m[14] = 0.;
m[15] = 1.;
}
void rotate_x_matrix (double a, Matrix m)
{
double a_rad;
double c, s;
a_rad = (double) (a * RADIANS_PER_DEGREE);
c = cos(a_rad);
s = sin(a_rad);
m[0] = 1.;
m[1] = 0.;
m[2] = 0.;
m[3] = 0.;
m[4] = 0.;
m[5] = c;
m[6] = s;
m[7] = 0.;
m[8] = 0.;
m[9] = -s;
m[10] = c;
m[11] = 0.;
m[12] = 0.;
m[13] = 0.;
m[14] = 0.;
m[15] = 1.;
}
void rotate_y_matrix (double a, Matrix m)
{
double a_rad;
double c, s;
a_rad = (double) (a * RADIANS_PER_DEGREE);
c = cos(a_rad);
s = sin(a_rad);
m[0] = c;
m[1] = 0.;
m[2] = -s;
m[3] = 0.;
m[4] = 0.;
m[5] = 1.;
m[6] = 0.;
m[7] = 0.;
m[8] = s;
m[9] = 0.;
m[10] = c;
m[11] = 0.;
m[12] = 0.;
m[13] = 0.;
m[14] = 0.;
m[15] = 1.;
}
void rotate_z_matrix (double a, Matrix m)
{
double a_rad;
double c, s;
a_rad = (double) (a * RADIANS_PER_DEGREE);
c = cos(a_rad);
s = sin(a_rad);
m[0] = c;
m[1] = s;
m[2] = 0.;
m[3] = 0.;
m[4] = -s;
m[5] = c;
m[6] = 0.;
m[7] = 0.;
m[8] = 0.;
m[9] = 0.;
m[10] = 1.;
m[11] = 0.;
m[12] = 0.;
m[13] = 0.;
m[14] = 0.;
m[15] = 1.;
}
void mult_matrix (Matrix ma, Matrix mb, Matrix m)
{
m[0] = ma[0] * mb[0] + ma[1] * mb[4] + ma[2] * mb[8] + ma[3] * mb[12];
m[1] = ma[0] * mb[1] + ma[1] * mb[5] + ma[2] * mb[9] + ma[3] * mb[13];
m[2] = ma[0] * mb[2] + ma[1] * mb[6] + ma[2] * mb[10] + ma[3] * mb[14];
m[3] = ma[0] * mb[3] + ma[1] * mb[7] + ma[2] * mb[11] + ma[3] * mb[15];
m[4] = ma[4] * mb[0] + ma[5] * mb[4] + ma[6] * mb[8] + ma[7] * mb[12];
m[5] = ma[4] * mb[1] + ma[5] * mb[5] + ma[6] * mb[9] + ma[7] * mb[13];
m[6] = ma[4] * mb[2] + ma[5] * mb[6] + ma[6] * mb[10] + ma[7] * mb[14];
m[7] = ma[4] * mb[3] + ma[5] * mb[7] + ma[6] * mb[11] + ma[7] * mb[15];
m[8] = ma[8] * mb[0] + ma[9] * mb[4] + ma[10] * mb[8] + ma[11] * mb[12];
m[9] = ma[8] * mb[1] + ma[9] * mb[5] + ma[10] * mb[9] + ma[11] * mb[13];
m[10] = ma[8] * mb[2] + ma[9] * mb[6] + ma[10] * mb[10] + ma[11] * mb[14];
m[11] = ma[8] * mb[3] + ma[9] * mb[7] + ma[10] * mb[11] + ma[11] * mb[15];
m[12] = ma[12] * mb[0] + ma[13] * mb[4] + ma[14] * mb[8] + ma[15] * mb[12];
m[13] = ma[12] * mb[1] + ma[13] * mb[5] + ma[14] * mb[9] + ma[15] * mb[13];
m[14] = ma[12] * mb[2] + ma[13] * mb[6] + ma[14] * mb[10] + ma[15] * mb[14];
m[15] = ma[12] * mb[3] + ma[13] * mb[7] + ma[14] * mb[11] + ma[15] * mb[15];
}